本文目录
本篇文章给大家谈谈马赫带效应,以及为什么会在机尾形成一个圆锥型的云相关的内容,希望对各位有所帮助,不要忘了收藏本站喔。

马赫带效应,为什么会在机尾形成一个圆锥型的云?

我们有时候在看某架战机高速飞行的时候,在一瞬间机身后半段会产生一个圆锥形的云团,所以很多人都说这架战机刚刚完成超音速加速飞行过程,理由就是战机机身中后部产生了锥状云团。首先我们要明白战机为什么在突破音障的时候,机身中后部会产生圆锥形的云团?还有是不是产生了锥状云团就说战机已经突破了音障在超音速飞行?首先来解释一下什么叫音障?早期的螺旋桨飞机因为速度比较低的缘故,是不可能出现这种现象的,直到二战后喷气式战机出现后,随着速度的增加,当飞机的速度越接近音速的时候,由于飞行速度的增加,积压在飞机前部的空气会被压缩成密度很高的空气墙,使战机速度难以进一步提升,所以把这种现象称之为“音障”。意思就是难以超音速飞行的一道障碍的意思吧。但是受限于战机的推力不够大的原因,战机要想进一步的提升速度突破音障,就会受到因压缩的空气团的阻力使战机出现剧烈的震荡和速度急剧衰减现象,这样积压在机身前部的空气会逐渐形成激波,激波使得流经机翼和机身表面的气流变得非常紊乱,从而使飞机剧烈抖动,操纵十分困难使得战机可能发生坠毁或者空中解体。直到美国的X1火箭动力的飞行器在成功突破音障后,超音速飞行才从理论走向实际。在飞行器跨越音障的过程中,机身前部的空气被急速压缩,而机身中后部的气压则相对较低,所以随着速度的逐步增加,当战机机身前部和后部的空气压差达到一定的差异后,空气中的水分开始凝结,形成水蒸气在机身后部气压相对较低的位置形成我们看到的锥形云团,到飞行器的速度成功超过音速后,这个锥形云团也会随之消失,所以这个锥形云团之所以是锥形的就是因为空气在压缩过程中,形成的激波由于压力不均等的原因,所以形成的云团也就成了我们看到的锥形。而且在这个锥形云团产生的过程中,机身对空气的压缩形成的激波面上声学能量高度集中,这些能量传到人们耳朵里时,会让人感受到短暂而极其强烈的爆炸声,这就是音爆。当然由于音爆产生在机身后部,所以驾驶战机突破音障的战机飞行员是听不到音爆的。再一个不是说战机高速飞行产生的锥形云团就代表了战机已经成功突破音障,之所以我们看到某些战机在实际速度不高的情况下也会产生锥形云团的原因是机身产生的涡流现象导致,比如战机在接近音速的时候,由于空气湿度比较大的缘故,在战机机身中后部也会产生一个类似锥形云团的云雾,这个其实我们也可以很好的理解,比如一些体型超大的轰炸机有时机身周围也会产生锥形云雾,或者是美军的舰载机在低空飞过航母的时候也有类似的锥形云雾,这些都不是战机在突破音速时所产生的音爆现象,只是空气涡流导致的水蒸气过大形成的积压云团罢了。具体怎么分辨是不是音爆云团呢?其实细看的话,音爆云团由于是由机身前部和中后部的空气压差不一致导致的,所以在战机突破音爆的瞬间,机身头部也是有一小部分压缩云团现象出现的。而空气涡流导致的压缩云团虽然也是因为空气压缩而形成的,但是一般情况下这个云团比较纯净,所以从这点还是可以分辨出来的。毕竟音爆产生的伤害是很大的,比如飞行航展期间的表演飞机的锥形云雾、舰载机超低空飞跃航母时的锥形云雾是音爆云的话,那在地面看表演的群众和航母上看风景的水兵岂不是要伤亡惨重?当然舰载机也不是没有过飞过航母时产生的音爆现象发生过,只是这个具体分辨起来不同情况不同对待罢了。

空气动力学离我们很远吗?

空气动力学

空气动力学是力学的一个分支,它主要研究物体在同气体作相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。

空气动力学的发展简史

最早对空气动力学的研究,可以追溯到人类对鸟或弹丸在飞行时的受力和力的作用方式的种种猜测。17世纪后期,荷兰物理学家惠更斯首先估算出物体在空气中运动的阻力;1726年,牛顿应用力学原理和演绎方法得出:在空气中运动的物体所受的力,正比于物体运动速度的平方和物体的特征面积以及空气的密度。这一工作可以看作是空气动力学经典理论的开始。

1755年,数学家欧拉得出了描述无粘性流体运动的微分方程,即欧拉方程。这些微分形式的动力学方程在特定条件下可以积分,得出很有实用价值的结果。19世纪上半叶,法国的纳维和英国的斯托克斯提出了描述粘性不可压缩流体动量守恒的运动方程,后称为纳维-斯托克斯方程。

到19世纪末,经典流体力学的基础已经形成。20世纪以来,随着航空事业的迅速发展,空气动力学便从流体力学中发展出来并形成力学的一个新的分支。

航空要解决的首要问题是如何获得飞行器所需要的举力、减小飞行器的阻力和提高它的飞行速度。这就要从理论和实践上研究飞行器与空气相对运动时作用力的产生及其规律。1894年,英国的兰彻斯特首先提出无限翼展机翼或翼型产生举力的环量理论,和有限翼展机翼产生举力的涡旋理论等。但兰彻斯特的想法在当时并未得到广泛重视。

在1901~1910年间,库塔和儒科夫斯基分别独立地提出了翼型的环量和举力理论,并给出举力理论的数学形式,建立了二维机翼理论。1904年,德国的普朗特发表了著名的低速流动的边界层理论。该理论指出在不同的流动区域中控制方程可有不同的简化形式。

边界层理论极大地推进了空气动力学的发展。普朗特还把有限翼展的三维机翼理论系统化,给出它的数学结果,从而创立了有限翼展机翼的举力线理论。但它不能适用于失速、后掠和小展弦比的情况。1946年美国的琼期提出了小展弦比机翼理论,利用这一理论和边界层理论,可以足够精确地求出机冀上的压力分布和表面摩擦阻力。

近代航空和喷气技术的迅速发展使飞行速度迅猛提高。在高速运动的情况下,必须把流体力学和热力学这两门学科结合起来,才能正确认识和解决高速空气动力学中的问题。1887~1896年间,奥地利科学家马赫在研究弹丸运动扰动的传播时指出:在小于或大于声速的不同流动中,弹丸引起的扰动传播特征是根本不同的。

在高速流动中,流动速度与当地声速之比是一个重要的无量纲参数。1929年,德国空气动力学家阿克莱特首先把这个无量纲参数与马赫的名字联系起来,十年后,马赫数这个特征参数在气体动力学中广泛引用。

小扰动在超声速流中传播会叠加起来形成有限量的突跃——激波。在许多实际超声速流动中也存在着激波。气流通过激波流场,参量发生突跃,熵增加而总能量保持不变。

英国科学家兰金在1870年、法国科学家许贡纽在1887年分别独立地建立了气流通过激波所应满足的关系式,为超声速流场的数学处理提供了正确的边界条件。对于薄冀小扰动问题,阿克莱特在1925年提出了二维线化机冀理论,以后又相应地出现了三维机翼的线化理论。这些超声速流的线化理论圆满地解决了流动中小扰动的影响问题。

在飞行速度或流动速度接近声速时,飞行器的气动性能发生急剧变化,阻力突增,升力骤降。飞行器的操纵性和稳定性极度恶化,这就是航空史上著名的声障。大推力发动机的出现冲过了声障,但并没有很好地解决复杂的跨声速流动问题。直至20世纪60年代以后,由于跨声速巡航飞行、机动飞行,以及发展高效率喷气发动机的要求,跨声速流动的研究更加受到重视,并有很大的发展。

远程导弹和人造卫星的研制推动了高超声速空气动力学的发展。在50年代到60年代初,确立了高超声速无粘流理论和气动力的工程计算方法。60年代初,高超声速流动数值计算也有了迅速的发展。通过研究这些现象和规律,发展了高温气体动力学、高速边界层理论和非平衡流动理论等。

由于在高温条件下全引起飞行器表面材料的烧蚀和质量的引射,需要研究高温气体的多相流。空气动力学的发展出现了与多种学科相结合的特点。

空气动力学发展的另一个重要方面是实验研究,包括风洞等各种实验设备的发展和实验理论、实验方法、测试技术的发展。世界上第一个风洞是英国的韦纳姆在1871年建成的。到今天适用于各种模拟条件、目的、用途和各种测量方式的风洞已有数十种之多,风洞实验的内容极为广泛。

20世纪70年代以来,激光技术、电子技术和电子计算机的迅速发展,极大地提高了空气动力学的实验水平和计算水平,促进了对高度非线性问题和复杂结构的流动的研究。

除了上述由航空航天事业的发展推进空气动力学的发展之外,60年代以来,由于交通、运输、建筑、气象、环境保护和能源利用等多方面的发展,出现了工业空气动力学等分支学科。

空气动力学的研究内容

通常所说的空气动力学研究内容是飞机,导弹等飞行器在名种飞行条件下流场中气体的速度、压力和密度等参量的变化规律,飞行器所受的举力和阻力等空气动力及其变化规律,气体介质或气体与飞行器之间所发生的物理化学变化以及传热传质规律等。从这个意义上讲,空气动力学可有两种分类法:

首先,根据流体运动的速度范围或飞行器的飞行速度,空气动力学可分为低速空气动力学和高速空气动力学。通常大致以400千米/小时这一速度作为划分的界线。在低速空气动力学中,气体介质可视为不可压缩的,对应的流动称为不可压缩流动。大于这个速度的流动,须考虑气体的压缩性影响和气体热力学特性的变化。这种对应于高速空气动力学的流动称为可压缩流动。

其次,根据流动中是否必须考虑气体介质的粘性,空气动力学又可分为理想空气动力学(或理想气体动力学)和粘性空气动力学。

除了上述分类以外,空气动力学中还有一些边缘性的分支学科。例如稀薄气体动力学、高温气体动力学等。

在低速空气动力学中,介质密度变化很小,可视为常数,使用的基本理论是无粘二维和三维的位势流、翼型理论、举力线理论、举力面理论和低速边界层理论等;对于亚声速流动,无粘位势流动服从非线性椭圆型偏微分方程,研究这类流动的主要理论和近似方法有小扰动线化方法,普朗特-格劳厄脱法则、卡门-钱学森公式和速度图法,在粘性流动方面有可压缩边界层理论;对于超声速流动,无粘流动所服从的方程是非线性双曲型偏微分方程。

在超声速流动中,基本的研究内容是压缩波、膨胀波、激波、普朗特-迈耶尔流动、锥型流,等等。主要的理论处理方法有超声速小扰动理论、特征线法和高速边界层理论等。跨声速无粘流动可分外流和内流两大部分,流动变化复杂,流动的控制方程为非线性混合型偏微分方程,从理论上求解困难较大。

高超声速流动的主要特点是高马赫数和大能量,在高超声速流动中,真实气体效应和激波与边界层相互干扰问题变得比较重要。高超声速流动分无粘流动和高超声速粘性流两大方面。

工业空气动力学主要研究在大气边界层中,风同各种结构物和人类活动间的相互作用,以及大气边界层内风的特性、风对建筑物的作用、风引起的质量迁移、风对运输车辆的作用和风能利用,以及低层大气的流动特性和各种颗粒物在大气中的扩散规律,特别是端流扩散的规律,等等。

空气动力学的研究方法

空气动力学的研究,分理论和实验两个方面。理论和实验研究两者彼此密切结合,相辅相成。理论研究所依据的一般原理有:运动学方面,遵循质量守恒定律;动力学方面,遵循牛顿第二定律;能量转换和传递方面,遵循能量守恒定律;热力学方面,遵循热力学第一和第二定律;介质属性方面,遵循相应的气体状态方程和粘性、导热性的变化规律,等等。

实验研究则是借助实验设备或装置,观察和记录各种流动现象,测量气流同物体的相互作用,发现新的物理特点并从中找出规律性的结果。由于近代高速电子计算机的迅速发展,数值计算在研究复杂流动和受力计算方面起着重要作用,高速电子计算机在实验研究中的作用也日益增大。因此,理论研究、实验研究、数值计算三方面的紧密结合是近代空气动力学研究的主要特征。

空气动力学研究的过程一般是:通过实验和观察,对流动现象和机理进行分析,提出合理的力学模型,根据上述几个方面的物理定律,提出描述流动的基本方程和定解条件;然后根据实验结果,再进一步检验理论分析或数值结果的正确性和适用范围,并提出进一步深入进行实验或理论研究的问题。如此不断反复、广泛而深入地揭示空气动力学问题的本质。

20世纪70年代以来,空气动力学发展较为活跃的领域是湍流、边界层过渡、激波与边界层相互干扰、跨声速流动、涡旋和分离流动、多相流、数值计算和实验测试技术等等。此外,工业空气动力学、环境空气动力学,以及考虑有物理化学变化的气体动力学也有很大的发展。

Concorde是什麽意思?

协和式飞机(Concorde;亦称和谐式客机,台译协和式客机)是由英国和法国联合研制的一种超音速客机,设计主导者是Mr. Lucien Servanty,这种飞机一共只建造了20架。

它的最大飞行速度可达2.04马赫,巡航高度18000米。

协和飞机於1969年研制成功,并於1976年1月21日投入商业飞行。

英国航空公司和法国航空公司使用协和飞机运营跨越大西洋的航缐。

飞机机翼设计为三角翼,三角翼的特点为失速临界点高,飞行速度可以更快,且能有效降低超高速抖动时的问题。

协和号四具引擎更配备了一般在战斗机上才看得到的後燃器(Olympus 593,Rolls-Royce)。

这架飞机还有个令人津津乐道的特点就是她会「变形」:其一是因为在2马赫的飞行速度时,空气摩擦使其机体产生高热,因热胀冷缩效应,协和号在飞行时最长会「变长」约24公分;其二是她的可变式机鼻,在飞行时直直挺挺的如一根针以利高速切开空气,但是在起降时,机鼻可以往下调5至12度以利飞行员的视野 - 事实上由於现在多有先进电脑导航仪器辅助,飞行员也不一定非得看见跑道才能起降,这么做只是求个安心,不过庞大的机鼻角度调整设备却白白的浪费飞机的宝贵重量与空间。

自从1969年首航以来,从未发生任何事故,使协和号获得了全球最安全的客机的名声。

协和号票价高昂,一张伦敦至纽约的来回票要价逾九千美元,亲自搭乘协和号班机往返欧美大陆成为许许多多人自幼以来的梦想。

飞机从欧洲到纽约的航程只需要不到三个半小时,且因为伦敦、纽约时差四个小时,所以搭乘协和号的旅客最喜欢说:「我还没出发就已经到了」。

2000年7月25日,协和号客机班机AF4590在进行起飞时辗过了跑道上另一架美国大陆航空的DC-10脱落的小铁条,造成爆胎,而轮胎破片以超过音速的高速击中机翼其中的油箱。

之後引发失火,导致飞机於起飞数分钟後即爆炸墬毁於机场附近的旅馆。

这是协和号服役期间唯一的一次的失事。

也是有史以来第一架超音速喷射机失事,这场悲剧造成了113人丧命。

此次失事促使飞机制造商重新改造机体设计,并修补了诸多缺失。

甚至利用防弹衣(Kelvar)原料来保护油箱,以避免油箱以後遭到高速的异物的穿刺。

但尽管如此,由於整个失事过程都被民众用家用录影器材拍摄下来,造成社会大众心理上的严重震撼,不论这家飞机以往声望有多高,但仅仅一次的失事就让协和号从此一蹶不振……,虽然协和号客机在2001年11月重新启航,载客量一直都严重不足。

因为对航空公司亏损严重,协和号客机终於在2003年退役。

到2003年4月,尚有12架进行商业飞行。

2003年10月24日,协和飞机执行了最後一次航班,全部退役。

除协和飞机以外,唯一的另外一种曾商用的超音速客机是由苏联设计制造的图-144型客机。

什么是伯努利原?

伯努利原理:

伯努利原理,其实质是流体的机械能守恒,简单的说就是动能+重力势能+压力势能=常数,并且有个著名的推论:等高流动时,流速大,压力就小。

伯努利原理是在1726年由丹尼尔·伯努利提出的,也是由他的名字命名而成的。

伯努利原理往往被表述为p+1/2ρv²+ρgh=C,这个式子被称为伯努利方程。式中p为流体中某点的压强,v为流体该点的流速,ρ为流体密度,g为重力加速度,h为该点所在高度,C是一个常量。它也可以被表述为p1+1/2ρv1²+ρgh1=p²+1/2ρv2²+ρgh²。

特别说明:

使用伯努利定律必须符合以下假设,方可使用;如没完全符合以下假设,所求的解也是近似值。

定常流:在流动系统中,流体在任何一点之性质不随时间改变。

不可压缩流:密度为常数,在流体为气体适用于马赫数(Ma)<0.3。

无摩擦流:摩擦效应可忽略,忽略黏滞性效应。

流体沿着流线流动:流体元素沿着流线而流动,流线间彼此是不相交的。

一直理解不了?

光速不变,

首先强调一下是简称,其措辞翻译,并不严谨贴切,

但你也不能说它错,毕竟简称不可深究,

因为这件事较真细论比较啰嗦,而使用频率又极高,字数太多极为不便,所以它简称光速不变也无可厚非,

了解了语言翻译书写上的掌故,在展开讨论啥是光速不变,

光速不变,表述并不清晰,但却是个客观事实,

这就是,光电磁波波峰一经发出,就与光源脱离关系,不再受发光源频率,能量强弱振幅,光源速度等影响,独立不变,孤立不变,速度为c,与波长,频率,强度(振幅),偏振方向,速度等等都脱离关系,光速独立,孤立不变,速度为c,

先发现的这一事实,后建立的光的波动说,

这一事实曾导致牛顿粒子论失利,

并最终催生出波粒二相性理论,

初步达成光是光子群的群体波动这样一个共识,就是波粒二相性,

波粒二相性可以良好的解释光电效应,爱因斯坦因为解释光电效应而获得诺贝尔物理学奖,

其实光的光速不变,或许就是波类的固有品性,声波,甚至机械波都有类似体现,

声波无论发声源怎样运动,己发出的声波都是声速传播,

光波也这德性,

但声波受介质密度影响,没介质的真空,声波就断了,

但光在真空中也能传播,真空光速是c,在介质中速度也不是不变,不同介质的折射就是光速打折了,

所以光速不变,不是指光的速度不变,而是光波速不随光源变,

光速不变只是简称翻译,(有意见找早期翻译算账),

似乎说成光速独立,光速孤立不变更贴切,但是考虑到这个词汇在实际应用语言和笔记中超高的使用频率,简称还是招人喜欢的,

因为光速独立,不受光源影响,所以被爱因斯坦一眼看上,

这品质太特殊了,这不正是天生的基准标尺所需要的吗?

谁都贿赂不了光速!不接受背狗加减±,这优秀品质做尺子岂不是再好不过了?

于是灵光迸发,相对论诞生了,

牛顿力学宇宙中混乱的参照系选用问题几乎迎刃而解,

将光速c做为基准,其它速度跟光速c找准,

一个与热力学绝对温标开氏温标,绝对零度异曲同工的,绝对速度标尺出现了,艾氏速度,

把c设为基准0,

则Ⅴ=C一v,

E=1/2(mV^2)

E=1/2(m(C一v)^2)

1/2是个大家都有的系数,运算中可消掉

简化成E=m(C一v)^2

当v=0即对牛顿静止物体

有E=m(C一0)^2

E=mC^2

m=E/(C一v)^2

对光子,ⅴ=c

m=E/(C一c)^2

m=E/0^2

分母出现0,数学上分母不能为0,质量表达式失效,

故光子无静质量数值,

这是相对论坐标系的原点,也是个数学盲点,一般讨论要绕开走,遇到与此盲点有关的要特别讨论,

仅管存在数学盲点,相对论与牛顿空间相比也简洁多了,

关于马赫带效应和为什么会在机尾形成一个圆锥型的云的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。